Discriminative Learning Under Covariate Shift
نویسندگان
چکیده
We address classification problems for which the training instances are governed by an input distribution that is allowed to differ arbitrarily from the test distribution—problems also referred to as classification under covariate shift. We derive a solution that is purely discriminative: neither training nor test distribution are modeled explicitly. The problem of learning under covariate shift can be written as an integrated optimization problem. Instantiating the general optimization problem leads to a kernel logistic regression and an exponential model classifier for covariate shift. The optimization problem is convex under certain conditions; our findings also clarify the relationship to the known kernel mean matching procedure. We report on experiments on problems of spam filtering, text classification, and landmine detection.
منابع مشابه
Selection Bias Correction in Supervised Learning with Importance Weight. (L'apprentissage des modèles graphiques probabilistes et la correction de biais sélection)
In the theory of supervised learning, the identical assumption, i.e. the training and the test samples are drawn from the same probability distribution, plays a crucial role. Unfortunately, this essential assumption is often violated in the presence of selection bias. Under such condition, the standard supervised learning frameworks may suffer a significant bias. In this thesis, we use the impo...
متن کاملNo Bias Left behind: Covariate Shift Adaptation for Discriminative 3D Pose Estimation
Discriminative, or (structured) prediction, methods have proved effective for variety of problems in computer vision; a notable example is 3D monocular pose estimation. All methods to date, however, relied on an assumption that training (source) and test (target) data come from the same underlying joint distribution. In many real cases, including standard datasets, this assumption is flawed. In...
متن کاملUnsupervised Risk Estimation with only Structural Assumptions
Given a model θ and unlabeled samples from a distribution p∗, we show how to estimate the labeled risk of θ while only making structural (i.e., conditional independence) assumptions about p∗. This lets us estimate a model’s test error on distributions very different than its training distribution, thus performing unsupervised domain adaptation even without assuming the true predictor remains co...
متن کاملRobust Covariate Shift Prediction with General Losses and Feature Views
Covariate shift relaxes the widely-employed independent and identically distributed (IID) assumption by allowing different training and testing input distributions. Unfortunately, common methods for addressing covariate shift by trying to remove the bias between training and testing distributions using importance weighting often provide poor performance guarantees in theory and unreliable predi...
متن کاملCovariate Shift Adaptation by Importance Weighted Cross Validation
A common assumption in supervised learning is that the input points in the training set follow the same probability distribution as the input points that will be given in the future test phase. However, this assumption is not satisfied, for example, when the outside of the training region is extrapolated. The situation where the training input points and test input points follow different distr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 10 شماره
صفحات -
تاریخ انتشار 2009